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Abstract—The effects of second-order terms on the velocity and temperature jumps at a wall are
obtained by a physical derivation. The analysis uses the concepts of effective mean free paths for
momentumn and energy transfer; the effective mean free paths are obtained from known viscosities

and thermal conductivities. The second-order slip flow analysis is applicable at somewhat lower
pressures than is the first-order analysis and applies to non-monatomic as well as to monatomic gases.
Severalillustrative examples, including fully developed flow and heat transfer in a tube are considered.
Differences between the first- and second-order corrections on the order of 20 per cent were noted in e

the region for which the analysis appears applicable. 4#0
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"t transfer:

effective free path for translational
energy transfer;
hard-sphere free path,

/pw

NOMENCLATURE M7, total x-momentum crossing d4 per
area (Fig. 1); unit area per unit time from above;
accommodation coefficient {equation M7, total x-momentum crossing dA per
(40)}; unit area per unit time from below;
specific heat at constant pressure; m, molecular mass;
specific heat at constant volume; Nu,  Nusselt number, 2goro/(Tyy — To)k;
energy crossing dA4 per unit area per Nu,, continuum Nusselt number;
unit time from a given direction; n, number density,
total energy crossing dA4 per unit area Pr, Prandtl number, cpu/k;
per unit time from above; D pressure;
total energy crossing d4 per unit area Ap, actual pressure drop;
per unit time from below; Ap,, pressure drop for continuum flow
fraction of molecules reflected diffusely at velocity at which actual pressure
[equation (19)]; drop is Ap;

Maxwellian distribution function for q. heat transfer per unit area per unit
molecular speeds [equation (6)]; time;

internal energy per unit mass other R, gas constant;

than translational energy; r, tube radius;

thermal conductivity; T, temperature;

molecular free path; Uz, x-component of mean velocity;
effective free path for internal energy Uz, x-component of molecular velocity;
transfer; v, molecular speed;

_effective free path for momentum Uz, portion of x-velocity component that

is random [equation (3)];

x, ¥, z, co-ordinates (Fig. 1).

Greek symbols

x-component of momentum crossing a, thermal diffusivity;
dA per unit time per unit area from a Y cp/Co;
given direction; 0, spherical co-ordinate (Fig. 1);
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K, Boltzmann’s constant;
K, viscosity;
P, density;
™, shear stress;
@, spherical co-ordinate (Fig. 1);
£, defined by equation (14);
w, angular velocity of dA;
Subscripts
b, bulk;
i, referring to internal energy other than
translational;
m, monatomic;
r. reflected;
t, referring to translational energy;
v, in velocity range dv at velocity v;
w, wall;
0, referring to point xq, yo, zo (Fig. 1) or

to gas at wall;

1,2, referring to planes [ and 2;
Superscript
o overbar designates mean value.

INTRODUCTION

Stip and temperature-jump boundary conditions
have been used with considerable success in the
analysis of slightly rarefied gases [1]. In this
method of analysis, the continuum equations of
momentum and energy are used throughout the
gas, and the effects of the walls are taken into
account by using appropriate boundary con-
ditions. For a rarefied gas with velocity and
temperature gradients, the velocity and tempera-
ture of the gas next to the wall will differ from
those of the wall. The gas next to the wall is
made up of molecules coming from the wall and
from a distance a mean free path away from the
wall, so that its velocity and temperature will be
between those of the wall and of the gas a mean
free path away. If the mean free path is small,
the wvelocity and temperature jumps will be
negligible.

In the usual analysis, the velocity and tempera-
ture jumps at the wall are assumed to be pro-
portional to the normal velocity and tempera-
ture gradients. That is a good assumption if the
velocity and temperature profiles are essentially
linear over a mean free path, as they will be if
the gas is but slightly rarefied. At somewhat
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lower pressures, however, where the profiles may
be non-linear over a mean free path, the jumps
at the wall would be expected to be functions
of the higher order normal and tangential
derivatives.

Second-order jump boundary conditions have
been obtained in reference [2] by using Burnett’s
approximate solution of the Boltzmann equation.
Burnett’s equations, however, have been found
to give results that are not always in agreement
with experiment [1]; in fact, in many cases the
Navier-Stokes equations were found to be
superior. Thus, attempting to obtain second-
order jump boundary conditions by using a
comparatively simple physical derivation*
appears to be worthwhile. The Boltzmann
equation will not be used herein, but the mo-
mentum and energy carried across an area
element by molecules that, in effect, had their
last collision a distance equal to an effective
mean free path from the element will be con-
sidered. The effective mean free path, which has
different values for momentum and heat
transfer and which also differs from the usual
hard-sphere mean free path, is then related to
experimental viscosities and thermal conduc-
tivities. The results differ somewhat from those
of reference 2.

The expressions for the velocity jump at a wall
will be derived in the next section, after which the
corresponding temperature jump will be con-
sidered. The results. which use Eucken’s
approximation [4], are applicable to both
monatomic and non-monatomic gases. Inter-
actions between the velocity and temperature
fields, such as thermal creep, are neglected.

MOMENTUM TRANSFER

Consider the x-component of momentum
carried by molecules across an area element dA
located at xo, yo, zo. The plane of d4 is normal
to the z-axis (Fig. 1). If all the particles were
traveling in a direction making an angle # with
the z-axis and a polar angle ¢, the number of
particles in the velocity range between v and
v + dv that pass though dA4 per second would
be nofo dv v cos 8 d4. The quantity ng is the
number density of particles at xo, o, zo, and fo

* A ;élateig‘;h;ysis for il;;;z;liradiaition\{n g;s was
recently carried out by the author (3).
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FiG. 1. Derivation of momentum and energy relations.

is the corresponding velocity distribution func-
tion. For an isotropic gas, the fraction of
particles with velocities that make an angle
between § and 6 + df with the z-axis and a polar
angle between ¢ and ¢ 4 dg is sin 8 dé dg/4n.
Thus, the actual number of particles in the
velocity range dv that pass through dA4 per unit
time at an angle with the z-axis between 6 and
6 4 df and a polar angle between ¢ and ¢ + do
is

dZy, = nofodvvcos 8d4 sin 8 d0 dp/dn (1)

To carry out the analysis, assume first, that the
mean velocity of the stream is uniform and in the
x-direction. (The effect of velocity gradients will
be considered subsequently.) Then the x-mo-
mentum carried across d4 by molecules that are
in the velocity range dv and move at an angle to
the z-axis between ¢ and 6 4 df and at a polar
angle between ¢ and ¢ + do is

dM v = muz,o no fo dv v cos 0 d4 sin 8 d6 de/dx
' @

where m is the molecular mass and uz,0 is the
x-component of the velocity in the range do.
Let
Uz, 0 = Uz,o + Uz,0 (3)

where Ugo is the mean x-component of
velocity at 0, and vz, is the portion of the
x-component of velocity that is random. The
random portion will have a Maxwellian velocity
distribution. By use of equation (3), equation (2)

can be integrated over all velocities to give
H.M—2R

dM; = dA (sin 6 cos 6 df dg/dm) [& muz,0no fo dr
= d4 (sin 8 cos 6 d8 dg/4n) mng ¥
Wz (¢ vfodv + sin cos ¢ (& v*fo dv)
“@
where v is written in spherical co-ordinates as
vy =vsinfcosgp 5)
and

- (7o (27)

Equation (6) gives, of course, the Maxwellian
distribution function for molecular speeds.
Equation (4) becomes
dM; = [dA (sin 0 cos 8 d de/4r) neie} ImUz,0
4+ (3/8) = mijg sin 8 cos ¢] @)

The last term in this equation is obtained by use
of the relation

2 = (3/8) 7 2

which can be obtained by using equation (6).
Equation (7) gives the x-momentum transferred
per unit time across d4 by molecules whose
velocities make an angle between 6 and 6 4 d6
with the z-axis and a polar angle between ¢ and
@ + dg, if the gas is moving at uniform velocity.

If equation (1) is integrated over all values of
v, the quantity in the first brackets in equation (7)
is obtained. Thus that quantity gives the number
of molecules that cross d4 from the given angle
range per unit time, and the quantity in the
second brackets can be interpreted as the
effective x-momentum carried per molecule.
If the mass velocity is not uniform, the molecules
will carry momentum that differs from
mUz.0 -+ (3/8) mmby sin 8 cos . Molecules that, in
effect, had their last collision a distance I,m
(effective mean free path for momentum
transfer) from dd4 will carry x-momentum
equal to mUz,; -+ (3/8) wmiy sin & cos ¢. Thus,
equation (7) becomes

dM, = [dA (sin 8 cos 8 A8 dp/4x) noide] [mUz,1 +
(3/8) = mvy sin 8 cos ¢} (8)

The mass velocity Uz, at a point x,y,z (Fig. 1)
can be related to conditions at xo, yo, zo by
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expanding Uy in a three-dimensional Taylor series about xq, yo, zo. This expansion gives

v S il ()50 (G), w0 ()]

If the binomial theorem is applied twice to the factor in brackets,

‘ N @ —20* “(y — yo)*~* {(x — xo)* | Uy \
Uzt = Z Z h—wlw—s!st (87—579@:55}5)0 ©)
Equation (9) can be written in spherical co-ordinates /.m, 8, ¢ with origin at dA4 by setting

x—xo=lemsinfcosp,y —yo=1Ilymsinbsing, z — zg = I ;m cos 8

It should be emphasized that /., will, in general, be greater than the distance to the actual point
of the last collision because of the persistence of velocities. That is, after a collision many of
the molecules tend to continue traveling in the direction they traveled before collision. Equation
(9) becomes, in spherical co-ordinates,

Iy ,u cOs™ % 8 sin® 6 sin~s g cos® ¢ ( ohUy
Usy = g — N g e _Q) (10)
(h — w)l (w — s)!s! Ozh—w gyre=s gxs [

:waO

In equation (8), the term (3/8) =md; sin 6 cos ¢ gives the contribution of the random molecular
velocities to the momentum transfer. If temperature gradients in the flow direction are assumed
to be small, that term will drop out when we integrate over direction to get the total x-
momentum passing through d4 from above. If thermal gradients in the flow direction are large,
that term may produce thermal creep effects, but those effects are neglected here. Thus, for
simplicity, the last term in equation (8) will be omitted in the remainder of the analysis.

Substituting equation (10) in equation (8) and averaging over all values of I, » give

dM mnovo dA i‘ ? B [” L sin®+1 8 cosh- w+1051nw 5 cost g d0 dg ( ohlU,
4 (h fu— wv)' (w P S)‘ s' gzﬁfﬁa‘y@is Ex*‘)o

h= 0 W= 0 s=0
(1)

where the overbar on % signifies an averaged value. To calculate 1” in terms of /., the
distribution function ¢ for molecular free paths must be known. Jeans [5] has shown that ¢ is

given approximately by
1 /
b= goo (- )

where ¢ is a constant on the order of one, which accounts for the fact that / varies with velocity.
Thus,

1 (= A )
== [ - = = h! h

clL exp( . 1) dl = h! (cl)
This form is also assumed to apply to /. m. Thus,

B, =hl, (12)
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where the constant ¢ has been absorbed in the value of I, m, (le,m will later be related to known

viscosities). Substituting equation (12) in (11) and integrating to obtain the total x-momentum
passing through d4 from above results in

mnouo dA orl, /2 P2
=+ — ) ‘71
dM Z Z T(h — W)'(W —-S)' s! (Gzh wcy —scxs)o X Jﬂ JO sin¥+1 @
dA4
cosh—w+1 9 sin?~s g dp df = BQ 10 Z Z ZQ (h. w, s) Ie . ( o ayw~5 3xs> 13)

where

1+ (=D 01 + (=D A TI(h — w + 2)/2] T(w — s + 1)/2] Tl(s + 1)/2] 14
(h— w)! (w — 9)!s! Tl + 9)/2] (1)

and mno is replaced by the mass density po. The symbol I' stands for the gamma function.
In order to obtain the x-momentum passing through d4 from below, we let 8 go from #/2 to
«, instead of from 0 to #/2, and change the sign of the result:

_ ovo dA MUy
dm; = "2 ? z Y‘(—l)" 0 Q (h,w, s) lem(a;ﬁrw'gﬁﬁ;s)o- (s)

:wOsU

L, w,s) =

The shear stress acting on dA4 is the net x-momentum transferred per unit area through
dA from above:

dM; —dM;
da

o = podo T S‘ ?[1 o ( l)h w]Q (]1 w, S) B o ( 9"&_*) (16)

167 zh—1 Py1—s dxs
h= 0 w == 0 s= 0

TO =

or

Next the velocity slip at a tangentially moving wall that is immediately below, but not touching
the area dA will be obtained. In order to do this, instead of a wall, a uniform gas below dA
moving at the velocity Uy is first considered. Equation (15) then yields for dM

__ poto d4
dM; =~ 16

If the term for h = 0 is extracted from the summation in equation (13) and equation (17) is
subtracted from that equation, there results

. 1 pobo dA E”Uz
dM; — dM; = ; potio dA (Uo — Uw) + = Z Z §Q(h w8 It ('a“z’h'—'waj,ﬁ@)o'

(18)

Consider next a wall moving at the velocity Uy, rather than a uniform gas, to be below dA.
Then the fraction of the momentum of the molecules relative to the wall, which is, on the
average, given up to the wall, is

1
2(0,0,0) U = 4 poio dA Us 17

P dM; — dM,,
~ aM; —dMm; (19)
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where dMj,, is the momentum carried by reflected molecules. The momentum difference
in the denominator of equation (19) is for a wall with perfect momentum accommodation and is
taken to be the same as that which occurs when a uniform moving gas is below dA4. The quantity
F is sometimes interpreted as the fraction of molecules reflected diffusely, the rest being
reflected specularly. The quantity dM; — dM,,,, which is the net x-momentum transferred
through d4 from above, is d4 times the shear stress. The shear stress is given by equation (16),
since that equation is assumed to apply throughout the gas; the effect of the wall is accounted for
by the jump boundary conditions. Setting 79 d4 = dM; — dM:, in equation (16), substi-
tuting that equation and equation (18) in (19), and solving for Uy — U, result in

Uo — Us = "Z N Z [P et b (i) @

~1w0s0

If we retain only terms through second order (terms containing second derivatives), equation
(20) becomes

2Q-—F); oU, 1. 02Uy, (82Ux 1 (RUz
UO - Uw _“§ ? lem ( az‘) zle m [("8;2‘)0_{'—2 ay ) +Q(8X2>)0]. (21)
Equation (16), correct to terms of second order, is
1 _, aU oU.

where the subscripts 0 have been dropped because the equation is assumed applicable
throughout the gas. Terms containing second derivatives are zero in equation (22). The
Navier-Stokes equations can be derived from equation (22) and are thus applicable in the
present analysis where second-order boundary conditions are used. It is significant that the
Navier-Stokes equations give better results for rarefied gases or for large velocity gradients than
certain other approximations, for instance, the Burnett equations {1].
From equation (22),
le,m == 3p/(p?)

and, since p == p/RT for a perfect gas, and & = (8RT/m)1/2 [equation (6)],

o3 ) wVRT
=3,/ (3) 255 @3)
Thus, equation (21) becomes
Uo — Un — ™ 2—-F) ﬁ\/RT oUy 97 (,u.\/RT) R2Uy
o= bYe=J3) " F (Bz—)o“ﬁ r ) ez )t
1 (22U, 1(@2Ux
2 (o), 3 (59)y) @

Equation (24) is written in terms of measurable quantities. The first term on the right-hand side of
equation (24) is the usual first-order slip term [6 (p. 296)], and the second term gives the
second-order contributions. Equation (24) applies for a wall below the gas. For a wall above
the gas, a similar derivation gives.

e O (BT,

1 (32U, 1 (02U, 25
(5t (me) @
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Equations (22), (24), and (25) are the equations for second-order rectilinear slip flow according
to the present method of analysis. They differ somewhat from those of reference 2. For
instance, the numerical coefficient on 62U;/0z2 in equation (24) differs from that in reference 2,
and the second derivatives with respect to x and y are absent in the corresponding expression in
reference 2. It appears, however, from the present physical derivation that those derivatives should
have an effect.

Equations (22), (24), and (25) were derived on the assumption that the flow is rectilinear. If the
fluid does not move in straight lines, as for concentric rotating cylinders, the area element
dA will rotate, and the molecules crossing it will appear to have a different U, than they would
have if the fluid were moving in straight lines. This effect can be taken into account by re-
placing oU,/0z in equations (22), (24), and (25) by 0U./?z + w = 8U,/0z, + oU,/ox, and
U022 by BU[022 + 8w[0z = BUL/0z2 + 02U,/ox 0z, where o is the angular velocity
of dA. Equation (22) then becomes

oUy e, U,

= (G te) = (T + ) @22
which is the generalized expression for shear stress used for deriving the Navier—Stokes
equations. Similarly, equation (24) becomes

. 7\ (2 — F) u/RT [[0U, 9 (ur/RT\2 [ (2U
t—to= J(5) 557 (% Jor oo =S5 ) (%),
‘w 1 /02U, 1 /02U,
Gt 2(ae ) talas)) oo

ENERGY TRANSFER
The analysis of energy transfer is somewhat analogous to that of momentum transfer in the
preceding section. Here, the energy carried by molecules across an area element d4 is con-
sidered. (See Fig. 1.) The number of particles dZ, in the velocity range dv that pass through
dA per unit time and make an angle with the z-axis between 8 and 6 +- d6 and a polar angle
between ¢ and ¢ + dg is again given by equation (1). First, the temperature of the gas is assumed
to be uniform. Then, the energy carried across d4 by molecules that are in the velocity range
dv and move at an angle to the z-axis between 6 and § + df and at a polar angle between ¢ and
¢ + dog is
dEy = [(1/2) muv? 4 mlg] nofo dv ¢ cos 8 dA sin 0 d0 dé/(4) (26)

where mlp is the internal energy of the molecules (energy other than translational). Integration of
equation (26) over all molecular speeds with fp independent of molecular speed gives

in 6 6 dfden 1 ® ©
dE = d4 (Sﬂ’ co:ﬂ_qf) no (fm jo vfodv + mlp L tfo dv) =
in 8 8dod 1 =
da (S————m °°:ﬂ d "’) no [5 m(@o + mﬁolo] @1

Using equation (6) for fo gives the relation
(@0 = (4/3) (D)o @0 (28)

so that

v
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As in momentum transfer, the quantity in the first bracket gives the number of molecules that
cross d4 from the given angle range per unit time. The quantity (4/3) (1/2)m(?)o is the effec-
tive translational energy, and mlp is the internal energy carried by each molecule. The factor 4/3
appears in the expression for the effective translational energy because the molecules with
large translational kinetic energy cross dA4 in greater numbers than do the slowcr moving ones.
Equation (29) applies to a gas at a uniform temperature. If the temperature is not uniform,
the molecules crossing dA4 will carry effective kinetic energy equal to (4/3) (1/2)m(02)1, where
(1/2)m(02)l is the average kinetic energy of molecules a distance l,; from dA4 and l,; is the
effective / for translational energy transfer. Similarly, the molecules will carry internal
energy equal to ml;, which is the average internal energy of molecules a distance /,,; from dA4. The
quantity /,,; is the effective / for internal energy transfer and is not necessarily equal to /e,
Thus, equation (29) becomes

6 cos 0 dd d 401y
dE = [dA (Si“f—”ﬁ’:w—("’) novo] [g (2) m P + mn] (30)

Proceeding as for momentum transfer yields, in place of equation (10),

@ h _
) — z Y/‘ Zl" cosh~% @ sin® @ sin¥ ¢ @ coss(p( P ) .
Ly

“(h—w)t (w— s)!s! dzh—w gyw—s gxs
h=0 w=0 s=0

and

l"i cost—w § sin® 0 sin®~5 p cos® @ err 32)
4.4 ,__ (h—w)! (w—s)!s! Ozh—w gyw—s 9xs ],

Substituting equations (31) and (32) in equation (30) and averaging over all values of /¢,: and /¢ ; give

sin 0 cos 8 d8 dg cosP~% 6 sin® 6 sin®—5 g cos® ¢
dE = {d“‘ (  4m ) ”°”°] S‘ z Z (h—w)(w— s)!s!

4_ [ (12 - onf
{3 fee [Eﬁ a‘yw?axs] e (a;h*—w a'yw*fs"‘ax*s) : (33)

Substituting for l” and lh from equation (12) (with /e, m replaced by I, or l,;) and integrating
to obtain the total energy passmg through d4 from above give

dE+ — mn()Uo (LA 4 l’ 6"(1/2 U%),i
H(h—w)v(w—s)'s' e

. n/2
+ I, (dzh e ﬁyw < axs) } jo jo sin®t1 @ cosh~w+1 § sin%—5 @ cos® ¢ dep dé

pofio dA ah (1/2 29 ) ony
= 16r z Z §9 i, w, S){s b [azn o fys 8x8] + e (sﬁim)o 34

where 2 (h, w, 5) is again given by equation (14). The change in total thermal energy of a molecule
is d[(1/2ymv? + ml]| = mc, dT, where ¢, is the specific heat at constant volume and T is the
temperature. After Eucken [4], ¢, is written as ¢y, + cv,4, SO that d(1/2 v2) = ¢y, dT and
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dI = ¢y,; dT. If the variation of cy,; with temperature for derivatives of higher order than the
first is neglected, equation (34) then becomes

» poL’odA ;‘ orT |
dE+ = P22 Z ?9(}; W s)( Iy coi+ 1% c ,)(M wayria)y  ©9

for the energy crossing dA4 from above. Similarly, the energy crossing d4 from below is [equation

(15)]

E- oUodA h—w T
dE Z z Z( 1) .Q(h w S)( l,tcot‘t"le‘ ")(52’;;-5)7_“):8.’(8)0 (36)

The net energy or heat transferred in the direction z is

_dE” —dE*
927 7744

or

15 _ ’ orT |
gs = ’;g:z z Z[l — (=D Q2 (h, w, s)( L Coe + IR, cv,i) (@jwﬁvg-gg)o 37

In order to obtain the effect of a wall on the heat transfer, we assume first, that there is a gas
below dA at the uniform temperature T,,. Equation (36) then yields, for dE—,

!
AP
If the term for n =0 is extracted from the summation in equation (35) and equation (38)
is subtracted from that equation,

A
dE+ — dE- = obodA( Co.t +- cvi) (To — Tw) + ”°U°d ? ? ?9(/1 s S)( I3, cou +

hlw()s()

I cu) (~ e R )

ozh—w 3yw—s st/ 0

‘4
dE- = odo dA (3 Co,t + Cv,i) Ty (38)

If a wall at temperature Ty, rather than a uniform gas, is placed below d4, the accommodation
coefficient a is defined by

dE+ — dE,

= dE+ —dE-

where dEy is the energy reflected from the wall. As in the case of F [equation (19)], the accommo-

dation coefficient a is regarded as a quantity to be determined by free-molecule flow experi-

ments, inasmuch as its value depends on many variables and is difficult to predict [7]. But

dE+ — dEy, the net energy transferred through d4 in the z-direction, is —dA times the heat

transfer per unit area and is given by equatlon 37). Setting —q: d4 = dE* — dE; in equatlon
(37), substituting that equatlon and equation (39) in equation (40), and solving for To — T give

1 - (_1)h w (A3 I, o+ I, o] & )
To—Tw= §Z§ B A e YWy (azh—w oy oxt )

=1 w=0 s=
@41

(40
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If only terms through second order are retained,

To—Tw = = @) cos + co

3 a

The heat transfer, correct through terms of
second order, is given by equation (37) as

_ 22~ a)[(4)3) let co,t + leji 0] (0T
3 ( oz

R. G. DEISSLER

1[@/3) B, o + B o0,

0 T2 (4/3) Co,t + Coi
T 1 /2T 1 /82T
(G 25+ 2 (50)) “
or
45 RT
let =15 J (g) e @
e 1' oT__or p
gz = — 3 pU (3 et Co,t + ley Cv;,i) bz _d—z
(43)
or
1 (4, :
k=3 o0 (3 ot ot -+ lo cv,i) (44)

The subscripts 0 have again been dropped
because equation (43) is assumed to apply
throughout the gas. For a monatomic gas,
equation (44) becomes

Following Eucken [4], it is assumed that internal
energy is transferred in the same way as mo-
mentum, so that, by equation (23),

G

Eucken also assumed that ¢,,; = (3/2)R, that is,
that the transfer of translational energy is
unaffected by the presence of internal energy.
Since ¢y = cp,t + Cp,0 and ¢y = R/(y — 1),

(48)

3(y—1 5—3y
4 _ L
km :§ pD le,t Cot (45) Cy,t = 2 Cy, Co,i == 3 Cy (49)
Equati 44), (47), (48), and (49) gi
But &, is related to p and c¢y,¢ by quations (44), ¢ )1( ): and (49) give
5 k=307 — 5 ucy (50)
km = Q'}LCv,t (46)
which is Eucken’s formula and has been found
{6 (p. 178)]. From equations (45) and (46), to give results for most gases that are in good
agreement with experiment [6 (p. 180)]. Substi-
L, = 45 u tution of equations (44), (47), (48), and (49) in
“t 8 pp equation (42) gives
_ 2—a y pv/RT (0T 97 (177y — 145) (u\/RT\?
ro-to=ven 0 s M (G it )
02T 1 (2T 1 [e2T
G2yt 2lam)))  ov
for a wall below the gas. A similar derivation gives
o 2—a vy  »VRT (eT 97 (177y — 145) (ur/RT\?
To=To=ven® 0 i B (E) e (5 )
oT 1 /e2T 1 /o2T 5
* 372)0+5 5'}’20+?:(372)0] 2
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for a wall above the gas. Equations (43), (51),
and (52) are second-order equations for heat
transfer in a rarefied gas according to the
present method of analysis. The application of
these equations and those in the preceding
section to several problems will be given in the
following sections.

PLANE COUETTE FLOW AND HEAT TRANSFER

For plane Couette flow with frictional heating
neglected, the shear stress and heat transfer are
independent of the distance from a wall. Thus
equations (22) and (43) become

— Uy = 7z/n (53)
and
T—T,=— q*;(—z 54)

Using velocity and temperature jumps at the
two walls calculated from equations (24), (25)
and (51) to (54) yields

(Uw2 — Up1)p @2 — F) u/RT
= = +/(2n )“4“- oL + 1
(55)
and
(Tw,1 — Tw2) k Q2—-a Y
L V) s E e

("‘/RT) Y1 G6)

where L is the distance between the two walls 1
and 2, and F and a have the same values for the
two walls. The results in this case are the same
as those for the first-order analysis. This is, of
course, because the velocity and temperature

profiles as given by equation (53) and (54) are
linear. The velocity results are in good agree-
ment with experiment [1 (p. 721)].

FULLY DEVELOPED FLOW AND HEAT
TRANSFER IN PASSAGES
For fully developed flow in a tube, the shear
stress varies linearly with distance from the
centerline, so that equation (22) becomes

ro dU,
R TR
or
Us—Up ==y (* 1) (5

The derivatives in equation (25) can be calculated
by setting r2 = z2 4- y2 in equation (57) and
letting y =0 after differentiation. Then the
velocity of the gas at the wall is, with U, =0,

(2—F) pVRT 7o
UO_\/( p ot

T

The bulk or mixed mean velocity for flow in a
tube is

To Upr dr
— o 7=
Vs = frerdr
or, from equation (57),
1
U = U + 40" (59)
“

From equations (58) and (59),

42):;:, @ F) ,L\/IR 27 (uy/RT\2 (60)
b+ 2ven = ( P’07) +—8-( P’OT)

A plot of equation (60) for F = 1 is given in Flg. 2. The term on the left-hand side of equation (60)
is the same as the ratio of the actual pressure drop for the tube to that for continuum flow
at the same velocity, if the pressure drop is small compared to the absolute pressure and
entrance effects are small. These conditions are approximated in the data from reference 8 for
hydrogen flow through a copper tube, and those data are included in Fig. 2 for comparison.
These data are also representative of those for flow through glass tubes [8]. It is assumed
that F=1 for the data throughout the entire range of pressures, inasmuch as F =1
in the free molecular region. Also included is the curve for first-order slip flow obtained
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Continuum flow
Pduilily

Present anoalysis (F=1)

0
o8

First-order slip
\/(\F =1)

o6

Ap/Ap,

O Hydrogen in copper tube [8]

02 | ] L L |
oot 0-02 004 006 0080 02
wyRT_ 2T
Pro w Iy

Fig. 2. Comparison of present analysis of fully

developed second-order slip flow in tubes with

first-order analysis and experimental data. (Diffuse
reflection at wall.)

by neglecting the last term in the denominator

7020

of the right-hand side of equation (60). The
predicted curve for second-order slip flow
appears to be in considerably better agreement
with the data than does that for first-order slip,
although there is some scatter in the data. When
pA/(RT)/pro is on the order of 0-2, for which the
analysis applies reasonably well, the difference
between the first- and second-order equations is
about 20 per cent. For values of pu+/(RT)/pro
greater than those shown, the predicted values
begin to deviate considerably from the data, and
a second-order slip flow analysis evidently is not
applicable.

If flow between parallel plates is considered
rather than flow through a tube, derivatives with
respect to y are absent, and in place of equation
(60) is

! 61)

3uly 143 /( )(2 —F) (p\/RT) +21767T (M/RT)

Pzo PZo

where zo is the half distance between the plates and

1

Uy =~

20
J Ug; dZ

Zo Jo

Consider next the fully developed heat transfer in a tube with uniform wal! heat flux. First-order
slip flow for this case has been considered in reference 9. If axial conduction is neglected, the
energy equation can be written for fully developed flow as

0. T
? ox

o 1o oT
= ol o

(62)

For uniform wall heat flux, 87/0x is independent of r, and with the use of equation (57),

equation (62) can be integrated to give

T—To=—"—

oT/ox [Uo

— (2 —ri) — S0 (r¢ —4rir2 + 3r3)}

pro (63)

The derivatives in the expression for the temperature jump at the wall [equation (52)] can be

obtained by substituting r2
Equation (52) then becomes

8T/ ox

y #y/ RT

=z2 + 32 in equation (63) and letting y = 0 after differentiation.

9‘n' (177y — 145)

Tw—To = [‘/(2”) a (y+ 1)Pr

p

( U oro 70}'0

("“”) (s

256 y+1

1 Toro)]
w .

(64)
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The bulk or mixed mean temperature for flow
in a tube is

{te TUgr dr
T, = AW (65)
With the use of equations (57) and (63),
Ty — To =
T, (g, LnUoo 11 77}
?{\0 2°% 3 u 192 u (66)
8a 1 Up 1 7oro
sUotg—
or
Tw—Tb:Tw—T0+
oT (111U  1U32
ax 0\ 192 T 370re T2
A2 . 67)
g (£ L Uor
l (8 27'()]'0

Writing a heat balance on a cylindrical element of
fluid of radius ro gives

oT

ox - ropchp (68)
where qq is the heat transfer per unit area from
the wall to the gas. Substituting equation (68)
in (67) and using the definition for Nusselt
number, Nu = 2qoro/k(Tw — Tp), and equation
(59) for Uy gives

1 _Te—Tok
Nu - 2q0r0
11 64 Upp 96 (Ugp\?
. 1 +_ T R R
48 11 T0l0 11 (Tol‘o
2 U 2 (69)
(1 +4- "f‘-)
T0r0

The first term on the right-hand side of equation
(69) is obtained from equations (64), (68) and (59)
as

(Tw—To)k_J(g)(Z—a) y
2q0r0 2] a (+DPr

uyRT 9 (17Ty — 145)
oo 1024 y 41
Uop
T BLy) 0
] o g Yo\ pro
7070

693
and, from equation (58),
U (r) @ PR
TOrQ - 2/ F Pro
27 (uy/ RT)2
5 (e |- b

From equations (71), (70), and (69), Nusselt
number can be calculated as a function of
uV/(RT)/(pro). The ratio Nu/Nuc, where
Nu. = 48/11, is plotted against u+/(RT)/(pro).
in Fig. 3. Curves are shown for y = 1+4,
Pr=07 F=1, and for a =1 and 0-5.

Second-order slip
_ {present onoiysis)
First-orcer slip

004 006 00801 o2

evRT_ )T
pro ") o

FiG. 3. Fully developed Nusselt number ratio for
flow in a tube at uniform wall heat flux. F= 1,
y = 1-4, Pr = O-T.

[oXe]] 002

These values for y and Prandtl number
correspond approximately to air and most
diatomic gases. Included for comparison are
curves for first-order slip flow and temperature
jump. Second-order effects in this case are
somewhat less than those in Fig. 2; however, the
differences between the first- and second-order
equations are still on the order of 15 per cent at
a value of uv/(RT)/(pro) of 0-2 and an a of 1.
The differences are less for smaller values of a.

SUMMARY OF RESULTS

The effects of second-order normal and tan-
gential derivatives on the velocity and tempera-
ture jumps at a wall in a rarefied gas were
considered. Use was made of effective mean free
paths for momentum and energy transfer that
differ from the actual mean free path because of
factors such as persistence of velocities, de-
pendence of free path on velocity, etc. The
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effective mean free paths were related to vis-
cosities and other measurable quantities. The
usual Navier-Stokes and energy equations in
the gas was shown to be consistent with the use
of second-order boundary conditions since,
according to the analysis, the second-order terms
are zero in the interior of the gas [equations (22)
and (43)]. The velocity and temperature jumps
at the walls are given by equations (22), (24),
(22a), (24a), (51) and (52). The results agree
with experiment at somewhat lower densities
than does the usual first-order analysis.
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Résumé—Les effets des termes de second ordre sur les sauts de vitesse et de température & une paroi
sont obtenus par une dérivation physique. L’analyse emploie les concepts des libres parcours moyens
effectifs pours le transport de quantité de mouvement et d’énergie, on obtient les libres parcours
moyens effectifs & partir des viscosités et des conductivités thermiques connues. L’analyse de I’écoule-
ment de glissement du second ordre s’applique a des pressions bien plus basses que ’analyse du
premier ordre et s’applique aussi bien & des gaz polyatomiques qu’a des gaz monoatomiques.

On considére plusieurs exemples illustratifs incluant I'écoulement entiérement développé et le trans-
port de chaleur dans un tube. On a remarqué les différences de I'ordre de 20 pour cent entre les cor-
rections du premier et du second ordre dans la région pour laquelle 'analyse semble s’appliquer.

Zusammenfassung—Die Einflisse von Ausdriicken zweiter Ordnung auf Geschwindigkeits- und
Temperaturspriinge in Wandnihe liessen sich mit Hilfe einer physikalischen Ableitung erhalten.
Die Analysis beniitzt das Konzept der effektiven mittleren freien Weglingen fiir den Impuls- und
Energietransport; diese effektiven mittleren freien Weglingen wurden aus der bekannten Viskositiit
und Wirmeleitfahigkeit ermittelt. Die Gleitstromungsanalysis zweiter Ordnung ist fiir etwas
geringere Driicke anwendbar als die Analysis erster Ordnung und gilt sowohl fiir einatomige als
auch fiir mehratomige Gase. Verschiedene anschauliche Beispiele auch fiir voll ausgebildete Stromung
und ausgebildeten Wirmeiibergang im Rohr werden angegeben. Differenzen zwischen den Kor-
rekturen erster und zweiter Ordnung wurden im Bereich in dem die Analysis anwendbar erscheint
in der Grossenordnung von 20 Prozent festgestellt.

Annorauna—Biusiiiie WIEHOB BTOPOTO MOP/JKA HA CRAYKM CKODOCTH M TEMIIEPATYpH HA
CT¢HKE NOJIyYello ¢ MoMoIubio Pusndeckoro guddepenuposanus. [Ipu aHAIMBE UCITOABYIOTCA
MOHATHA 3QPeKTHBHBIX CPEeIHHX WyTelt cBROGOMHOTO mpofera IJIA mepeHoca MMUYIbCa W
sHepruu; s PerTABHLIE Cpene CBOGOHEIE IYTH TPOGera IOy YeHbI 110 H3BECTHHIM 3HAYEHMSIM
BA3KOCTEH U TeIIONPOBOMHOCTEH. AHANIN3 CKOJNB3AMIET0 HOTOKA BTOPOTO POAA MPUMEHAETCH
IIpH AABIEHUAX HEMHOTO MeHBIINX, YeM IpH AHAJAU3e MepBOTO pojga M npuMeHAeTCA KaK K
MHOrOQTOMHBIM, TAK M K OJHOATOMHBEIM rasaM. [I0Ka3aHO HECKOJBKO TPHUMEPOB, IMpUYeM
paccMOTPEHO TIOJIHOCTHIO Pa3BUTOE TeveHme U TermmooOMeH B TpyOe. OrMevalnncs pasnocTu
MEMly MONpPABKAMM NMEPHOr0 M BTOPOro nopraka, npubansurensHo oxoso 209, B olmacrn,
AR KOTOPOH NpHAMEeHsIIICA STOT ANAMMS,




